Difference between revisions of "« LAKE CHAUVET » EGLISENEUVE-D’ENTRAIGUES (63) 18.07.1952"

Un article de U-Sphere.
Jump to: navigation, search
(Created page with "On Friday July 18, 1952, at 6:10 p.m., André Frégnale, geological engineer, walks near Lake Chauvet (Puy-de-Dôme). The weather is very good, the sky is azure blue with a st...")
 
Ligne 5: Ligne 5:
 
  "It was around 6 p.m., told Mr. Frégnale, when I saw the saucer. Ignoring its circumference, I cannot say at what altitude it was flying. Apparently it was between 3,000 and 8,000 meters. I do not think that the altitude could have been higher, because then, due to the thickness of the atmosphere, the craft would have presented a bluish metallic tint which it did not have.'
 
  "It was around 6 p.m., told Mr. Frégnale, when I saw the saucer. Ignoring its circumference, I cannot say at what altitude it was flying. Apparently it was between 3,000 and 8,000 meters. I do not think that the altitude could have been higher, because then, due to the thickness of the atmosphere, the craft would have presented a bluish metallic tint which it did not have.'
  
  <b>Four shots.</b>
+
  <b>Four snapshots.</b>
  
 
  "I had time to take four shots very quickly. I saw the craft for about 50 seconds and after taking the views I observed the craft with binoculars. According to my observations and calculations I did later, if the saucer was at 3,000 meters it propelled itself at about 300 meters per second, if it was at 8,000 meters its speed was naturally greater and could reach 800 meters per second. I heard absolutely no noise.
 
  "I had time to take four shots very quickly. I saw the craft for about 50 seconds and after taking the views I observed the craft with binoculars. According to my observations and calculations I did later, if the saucer was at 3,000 meters it propelled itself at about 300 meters per second, if it was at 8,000 meters its speed was naturally greater and could reach 800 meters per second. I heard absolutely no noise.
Ligne 49: Ligne 49:
 
</gallery>
 
</gallery>
  
==Qu'en penser ?==
+
==Generalities==
  
  
Difficile, après plus de soixante années passées, d'expertiser des négatifs qui ont de toutes façons disparu et pis encore, d'interroger un témoin maintenant décédé. Intéressant de constater selon les mots du témoin l'esprit critique qu'il a vis à vis de l'évaluation des dimensions, piège dans lequel tombent pourtant de nombreux témoins aujourd'hui.
+
After more than sixty years, it is hard to appraise negatives that have disappeared anyway and worse, to question a witness who is now deceased. Interesting to note, according to the words of the witness, the critical spirit he has with regard to the evaluation of the dimensions, a trap in which many witnesses nevertheless fall today.
  
Pourtant, les photos prises au Lac Chauvet apparaissent toujours aussi intrigantes, trop belles pour être vraies selon certains: la question du "quoi ?" reste toujours posée.
+
However, the photos taken at Lac Chauvet still appear as intriguing, too good to be true according to some: the question of "what?" always remains posed.
  
D'une part, avec le recul, malgré la propre prise de distance du témoin, cela ne pourrait-il pas être canular ? Frégnal aurait t-il pu volontairement photographier un objet lancé ou planant ? D'autre part, Pierre Guérin, professeur à l'institut d'astrophysique de Paris, avait publié plusieurs analyses de ces photos, concluant à leur authenticité. Cependant il est parti d'un postulat : la trajectoire était rectiligne, plaquant son analyse sur les propos du témoin, et donc sa sincérité.
+
On the one hand, with hindsight, despite the witness's own distancing, couldn't this be a hoax? Could Frégnal have deliberately photographed a thrown or hovering object? On the other hand, Pierre Guérin, professor at the Institute of Astrophysics in Paris, had published several analyzes of these photos, concluding that they were authentic. However, he started from a premise: the trajectory was straight, basing his analysis on the words of the witness, and therefore his sincerity.
  
Sceptiques et croyants sont montés à l’assaut, régulièrement, pour réfuter et prendre position. Je préfère vous prévenir immédiatement: je ne mettrai pas un point final à cette affaire, je préfère juste modestement une contribution.
+
Doubters and believers have regularly attacked to refute and take a stand. I prefer to warn you immediately: I will not put an end to this matter, I just modestly prefer a contribution.  
Sommaire
 
  
==Méthode d'analyse==
+
==Analysis method==
  
Sans remettre en cause les propos du témoins, mais sans non plus s'appuyer sur ceux-ci, je trouvais intéressant l'idée de modéliser la trajectoire en 3D, uniquement sur la base des photos: peut-on vérifier si les mots du témoins sont en accord avec les photos ? D'autant qu'en parcourant le net, je n'ai nulle part retrouvé de tentative de reconstitution de la scène permettant de se représenter le cadrage et la trajectoire (si ce n'est sous forme d'équations et paramètres trigonométriques).
+
Without calling into question the words of the witnesses, but without relying on them either, I found the idea of ​​modeling the trajectory in 3D, solely on the basis of the photos, interesting: can we check whether the words of the witnesses do they match the pictures? Especially since browsing the net, I have nowhere found an attempt to reconstruct the scene allowing to represent the framing and the trajectory (except in the form of trigonometric equations and parameters).
  
J'ai décidé de travailler en "aveugle", c'est à dire, sans reprendre les éléments de calcul de Pierre Guerin, ni ceux présentés sur le site d'Adelmon pour essayer de rester aussi "neutre" que possible.
+
I decided to work "blind", that is to say, without taking up Pierre Guerin's calculation elements, nor those presented on the Adelmon site to try to remain as "neutral" as possible.
  
Pour recréer un modèle tridimensionnel de la scène, je me suis appuyé sur un outil que j'utilise de temps en temps, qui me permet de retrouver les paramètres de géométrie en 3D sur des objets que l'on voit en photo. Ici, je l'ai un peu fait évoluer de façon à ce qu'il tienne compte simultanément des 4 photos et propose une reconstitution dynamique de la scène, en fonction des paramètres entrés.
+
To recreate a three-dimensional model of the scene, I relied on a tool that I use from time to time, which allows me to find the geometry parameters in 3D on objects that we see in photos. Here, I made it evolve a little so that it simultaneously takes into account the 4 photos and offers a dynamic reconstruction of the scene, according to the parameters entered.
  
Mon objectif était de trouver au moins une configuration pouvant satisfaire aux photos et aux conditions d'éclairage.
+
My goal was to find at least one setup that could satisfy the photos and lighting conditions.
  
 +
===Determination of the orientation of the phenomenon and its contours===
  
===Détermination de l'orientation du phénomène et de ses contours===
+
Given the motion blur, to help determine the boundaries of the object in the photo, but also to determine its orientation parameters in space, I assumed it was a disc In 3D. More precisely, a model based on two discs, of which the central one is located very slightly above the other: I took into account a very slight asymmetry of the respective centers. It seems to correspond to a "depression" of the central disc, moreover less than that of a 3D model of clay pigeon (~1% in proportion to the diameter, perhaps considered negligible and requires better photos to decide ).
  
Compte tenu du flou de bougé, pour aider à détertminer les limites de l'objet sur la photo, mais aussi pour déterminer ses paramètres d'orientation dans l'espace, je suis parti du principe qu'il s'agissait d'un disque en 3D. Plus précisément, un modèle à base de deux disques, dont celui central est situé très légèrement au-dessus de l'autre: j'ai tenu compte d'une très légère asymétrie des centres respectifs. Elle parait correspondre à un "enfoncement" du disque central, d'ailleurs moindre que celui d'un modèle 3D de pigeon d'argile (~1 % en proportion du diamètre, peut-être considéré comme négligeable et nécessite de meilleurs photos pour trancher).
+
I visualized this disk in "flat" space, then I used 3 axes of rotation according to a reference attached to this 3D disk, to vary the display.
  
J'ai visualisé ce disque dans l'espace à "plat" , puis, j'ai utilisé 3 axes de rotation selon un repère attaché à ce disque 3D, pour en faire varier l'affichage.
+
Thanks to this, by playing on the 3 axes of rotation, we vary the position of the 3D shape in space until we find the exact configuration of each photo.
  
Grâce à cela, en jouant sur les 3 axes de rotation nous faisons varier la position de la forme 3D dans l'espace jusqu'à retrouver la configuration exacte de chaque photo.
+
[[image:3 axes rotation espace, illustration.png|center]]
  
[[image:3 axes rotation espace, illustration.png|center]]
+
These are the rX, rY and rZ values ​​(expressed in degrees) used on the simulator page (presented later in the article) that I saved and that you can modify. I also apply a zoom coefficient (Zoom Factor) which determines the angular size of the PAN on each photo.
  
Ce sont les valeurs rX, rY et rZ (exprimées en degrés) utilisées sur la page du simulateur (présenté plus bas dans l'article) que j'ai enregistrées et que vous pouvez modifier. J'applique également un coefficient de zoom (Zoom Factor) qui permet de déterminer la taille angulaire du PAN sur chaque photo.
+
Using the same 3D shape for each photo helps to reduce the uncertainties from one photo to another, such as, for example, on the position of the central dark area, which is sharper in photo 3, which can be as a result, readjust/find more easily on the others.
  
Utiliser une même forme 3D pour chaque photo permet d'aider à réduire les incertitudes d'une photo sur l'autre, comme par exemple, sur la position de la zone sombre centrale, plus nette sur la photo 3, que l'on peut du coup recaler/retrouver plus aisément sur les autres.
+
===Determination of the position of the phenomenon in space===
  
===Détermination de la position du phénomène dans l'espace===
+
The approach was as follows: initially, I only relied on the relative PAN/sun/observer angles so as not to be interfered with by the orientations of the photos. Whatever the position of the photographer and the inclination of his photos, this should not have any impact on the rendering of the phenomenon as such.
  
L'approche a été la suivante: dans un premier temps, je ne me suis appuyé que sur les angles relatifs PAN/soleil/observateur pour ne pas être parasité par les orientations des photos. Quelle que soit la position du photographe et l'inclinaison de ses photos, ceci ne devait pas avoir d'impact sur le rendu du phénomène en tant que tel.
+
Indeed, there are always at least two markers visible on each photo of the phenomenon which make it possible to delimit a luminous arc along the phenomenon. They are related to the reflection of light on the surface of the object and they are noted in the diagram below by an orange and blue cross.
  
En effet, il existe toujours au moins deux repères visibles sur chaque photo du phénomène qui permettent de délimiter un arc lumineux le long du phénomène. Ils sont liés à la réflexion de la lumière sur la surface de l'objet et ils sont notés dans le schéma ci-dessous par une croix orange et bleue.
 
  
 
[[image:Chauvet hypotheses.jpg|center|frame|800px|
 
[[image:Chauvet hypotheses.jpg|center|frame|800px|
La croix orange représente le point d'extinction des rayons lumineux, dans le champ de vision de l'observateur. Il s'agit de la limite au delà de laquelle le soleil ne peut plus éclairer. La tangente au bord de l'objet à cet endroit indique la direction du soleil.<br>
+
The orange cross represents the point of extinction of the light rays, in the observer's field of vision. This is the limit beyond which the sun can no longer illuminate. The tangent to the edge of the object at this location indicates the direction of the sun.
La croix bleue représente le point de disparition des rayons lumineux, dans le champ de vision de l'observateur. Au-delà de ce point l'observateur ne peut plus les voir car les rayons lumineux bien réfléchis mais, sont derrière l'objet, relativement à sa position. En utilisant ce point de disparition, et en prenant la tangente au bord de l'objet on doit retrouver la direction de l'observateur.]]
+
The blue cross represents the point of disappearance of the light rays, in the observer's field of vision. Beyond this point the observer can no longer see them because the light rays are well reflected but are behind the object, relative to its position. Using this point of disappearance, and taking the tangent to the edge of the object, we must find the direction of the observer. ]]
  
==Application de la méthode==
+
==Application of the method==
  
Partant de cette idée, il me fallait les moyens de calculer ces tangentes et donc de redresser les formes en choisissant les bon paramètres de géométrie 3D. De façon classique, le programme que j'ai réalisé utilise des rotations suivant les 3 axes x, y, z, et en considérant que le repère formé par les axes (x, y, z) passe par le centre de l'objet.
+
Starting from this idea, I needed the means to calculate these tangents and therefore to straighten the shapes by choosing the right 3D geometry parameters. Classically, the program I made uses rotations along the 3 axes x, y, z, and considering that the frame formed by the axes (x, y, z) passes through the center of the object.
  
===Un simulateur 3D pour trouver les paramètres d'inclinaison du phénomène ===
+
===A 3D simulator to find the inclination parameters of the phenomenon===
  
 
[http://www.u-sphere.com/data/3D/index.php Vers le simulateur]
 
[http://www.u-sphere.com/data/3D/index.php Vers le simulateur]
  
Vous pouvez tester le programme (vous ne casserez rien ! des paramètres par défaut sont enregistrés, ils sont remis automatiquement à chaque usage).
+
You can test the program (you won't break anything! default settings are saved, they are automatically reset each time you use it).
 
+
I tried to make it fun enough, and everyone can try to figure out settings that work.
J'ai essayé de faire en sorte que ce soit assez ludique, et que tout le monde puisse essayer de déterminer des paramètres qui fonctionnent.
 
  
 
==== Comment appliquer les paramètres de prise de vue====
 
==== Comment appliquer les paramètres de prise de vue====
  
Lorsque l'on se connecte sur la page, voici comment cela marche:
+
When you connect to the page, here's how it works:
  
# d'abord, on choisi la photo sur laquelle on veut travailler et on appuie sur "OK",
+
# first, we choose the photo on which we want to work and we press "OK",
# ensuite, les cercles verts doivent être alignés sur les contours extérieurs et intérieurs des photos du phénomène, avec l'incertitude liée à la nature du biseau sur le bord de l'objet et du flou
+
# then, the green circles must be aligned with the exterior and interior contours of the photos of the phenomenon, with the uncertainty linked to the nature of the bevel on the edge of the object and the blur
# puis, la croix jaune permet de trouver la direction du soleil. Il faut aligner le losange jaune sur le point d'extinction de la lumière. La flèche jaune indique alors la direction du soleil. La croix jaune (l'éclairage de la surface) est solidaire de l'objet 3D. Il faut faire varier le paramètre "Rotation axe Z"
+
# then, the yellow cross makes it possible to find the direction of the sun. You must align the yellow diamond on the point of extinction of the light. The yellow arrow then indicates the direction of the sun. The yellow cross (the surface lighting) is attached to the 3D object. The "Z axis rotation" parameter must be varied
# enfin, la croix bleue permet de trouver la direction du témoin. Cette fois-ci, il faut aligner le losange bleu, sur le deuxième point d'extinction de la lumière, là ou elle disparait pour passer derrière le phénomène. Il faut jouer sur le paramètre "Dir. observateur", indépendant des paramètres de visualisation 3D de l'objet. A noter je pense qu'ici vous pouvez aussi rechercher l'intersection avec le point qui détermine la plus grande largeur apparente de l'ovale: si la photo est bien horizontale cela devrait être équivalent (cf. schéma précédent).
+
# finally, the blue cross makes it possible to find the direction of the witness. This time, you have to align the blue diamond, on the second point of extinction of the light, where it disappears to pass behind the phenomenon. You have to play with the "Dir. observer" parameter, independent of the 3D visualization parameters of the object. Note I think that here you can also find the intersection with the point that determines the largest apparent width of the oval: if the photo is horizontal it should be equivalent (see previous diagram).
  
Enfin, vous pouvez jouer sur les autres paramètres :
+
Finally, you can play with the other parameters:
  
 
[[image:3D soft legendes.jpg]]
 
[[image:3D soft legendes.jpg]]
  
Et quand vous êtes satisfaits, vous validez à nouveau sur le bouton [OK]: une photo redressée est calculée avec les paramètres donnés, sur celle-ci apparaissent la direction du soleil et du témoin :
+
And when you are satisfied, you validate again on the [OK] button: a straightened photo is calculated with the given parameters, on this one appears the direction of the sun and the indicator:
  
 
[[image:Chauvet photo 2b 3D.png]]
 
[[image:Chauvet photo 2b 3D.png]]
  
Ces directions permettent de positionner le phénomène sur un plan 2D: ce qui compte c'est que l'écart relatif entre les flèches jaunes et bleues soient conservé. J'ai considéré de façon également arbitraire que l'élévation était donnée par la rotation rX.
+
These directions make it possible to position the phenomenon on a 2D plane: what matters is that the relative difference between the yellow and blue arrows is preserved. I also considered arbitrarily that the elevation was given by the rotation rX.
  
La distance effective au témoin est relative à la taille du phénomène (en mètres), qui est également arbitrairement donnée  : vous pouvez la modifier pour simuler un objet aussi grand/petit que vous souhaitez. Cela ne changera pas l'orientation et la géométrie générale.
+
The effective distance to the witness is relative to the size of the phenomenon (in meters), which is also arbitrarily given: you can modify it to simulate an object as large/small as you wish. It will not change the orientation and general geometry.
  
D'autres paramètres sont accessibles: direction du soleil, résolution angulaire des photos, distance angulaire du centre des phénomènes relativement au bord gauche de chaque photo.
+
Other parameters are accessible: direction of the sun, angular resolution of the photos, angular distance from the center of the phenomena relative to the left edge of each photo.
  
Ci-après, le trait blanc, représente un exemple de trajectoire dynamiquement calculée. Les arcs violets sont les champs angulaires des photos (redressées horizontalement).
+
The white line below represents an example of a dynamically calculated trajectory. The purple arcs are the angular fields of the photos (straightened horizontally).
  
 
[[image:Chauvet reconstitution top.png]]
 
[[image:Chauvet reconstitution top.png]]
  
A noter que quand vous appliquez les paramètres de rotation ceux-ci sont effectués dans l'ordre suivant :
+
Note that when you apply the rotation parameters these are done in the following order:
  
  1. rotation autour de l'axe Z (dans le plan horizontal),
+
  1. rotation around the Z axis (in the horizontal plane),
  2. rotation autour de l'axe X (qui correspond à une inclinaison latérale, gite ou élévation sur l'horizon) à 90° cela équivaut à voir le phénomène au zénith, et enfin,
+
  2. rotation around the X axis (which corresponds to a lateral inclination, heel or elevation on the horizon) at 90° this is equivalent to seeing the phenomenon at the zenith, and finally,
  3. rotation sur l'axe Y vers l'avant ou l'arrière (cambrure en quelque sorte).
+
  3. Y-axis rotation forward or backward (camber somehow).
  
==Conclusions==
+
==Findings==
  
Les conclusion ci-après ne sont bien entendu pas définitives. Toutefois, voici ce que l'on peut dire partant de cette proposition de reconstitution :
+
The following conclusions are of course not definitive. However, here is what can be said on the basis of this reconstitution proposal:
  
# s'il s'agit bien de la même série de photos et du même phénomène, il a effectivement une trajectoire "relativement" rectiligne
+
# if it is indeed the same series of photos and the same phenomenon, it does indeed have a "relatively" rectilinear trajectory
# l'altitude est à peu près constante : légèrement "creusée" au début par une descente sensible jusqu'au point 2, puis remontée légère jusqu'au point 4
+
# the altitude is more or less constant: slightly "hollowed" at the start by a steep descent to point 2, then a slight ascent to point 4
# la zone sombre est orientée dans l'axe du soleil, sauf sur la photo 3 et 4 un décentrage d'une dizaine de degrés se produit, dans le sens du déplacement.
+
# the dark zone is oriented in the axis of the sun, except in photos 3 and 4 an off-centering of about ten degrees occurs, in the direction of movement.
# il s'en faut de peu pour que les photos 3 et 4 se superposent (mais ça on le savait).
+
# it doesn't take much for photos 3 and 4 to overlap (but we knew that).
  
Je me suis demandé si la radiosité pouvait expliquer la zone sombre visible sous le phénomène (http://fr.wikipedia.org/wiki/Radiosit%C3%A9_%28infographie%29), puisque cette zone est orientée dans l'axe du soleil. (Particulièrement sur les photos 1 et 2, mais c'est un peu moins vrai pour la 3 et la 4). En effet, peut-être la tranche du phénomène masquait le soleil et créait une ombre sur sa face intérieure ? L'éclairage de la face inférieure, n'aurait alors était du qu'à la radiosité (un éclairage indirect depuis le sol). J'ai réalisé un modèle 3D sur la base d'un disque de type "pigeon l'argile", et si l'on peut s'approcher de l'effet escompté jusqu'à un certain point: il faut que la lumière ambiante soit beaucoup moins forte, qu'il fasse presque nuit: avec un éclairage à 18:10 locale (17:10 TU), c'est beaucoup trop clair, de plus, dans sa partie descendante (1 et 2), le phénomène est incliné vers le soleil; il ne joue pas le rôle de "parasoleil", à l'inverse du modèle que j'ai fait ici :
+
I wondered if radiosity could explain the dark zone visible under the phenomenon ( http://fr.wikipedia.org/wiki/Radiosit%C3%A9_%28infographie%29), since this zone is oriented in the axis of the sun. (Particularly on photos 1 and 2, but it is a little less true for 3 and 4). Indeed, perhaps the edge of the phenomenon masked the sun and created a shadow on its inner face? The lighting of the lower face would then have been due only to radiosity (indirect lighting from the ground). I made a 3D model based on a "clay pigeon" type disc, and if we can get close to the desired effect up to a certain point: we need ambient light is much less strong, that it is almost dark: with lighting at 6:10 p.m. local (5:10 p.m. UT), it is much too bright, moreover, in its descending part (1 and 2), the phenomenon is inclined towards the sun;
  
[[image:Chauvet radiosite.png|thumb|center|400px|Modèle 3D du phénomène photographié.]]
+
[[image:Chauvet radiosite.png|thumb|center|400px|3D model of the photographed phenomenon. ]]
  
De plus, même avec un ciel plus sombre, je n'arrive pas à prolonger l'ombre jusqu'au bord du phénomène: il y a toujours un contour plus clair, au contraire de ce qui apparait sur l'image du film Pathé (1921.jpg en PJ).  
+
Moreover, even with a darker sky, I cannot extend the shadow to the edge of the phenomenon: there is always a clearer outline, contrary to what appears on the image of the film Pathé ( 1921.jpg in PJ).
  
Alors est-ce que cette zone sombre est constitutive du phénomène ? Probable. Elle apparait également dégradée: le noir semble aller en s'éclaircissant vers la partie arrière (voir la coupe radiométrique avec IPACO).
+
So is this dark zone constitutive of the phenomenon? Likely. It also appears degraded: the black seems to be getting lighter towards the back part (see the radiometric cut with IPACO).
  
Enfin, j'ai pu, en modifiant les paramètres d'URLs sur le site de Pathé, accéder à des photos en grand format normalement cachées et extraites de ce film. Je vous joins les deux plus remarquables:
+
Finally, I was able, by modifying the URL parameters on the Pathé site, to access large format photos normally hidden and extracted from this film. I enclose the two most remarkable:
  
* Celle ou Fregnal (2207) décrit son observation devant les caméras et qui permet de voir le paysage, notamment une petite montagne boisée en arrière plan, regardant en direction de sa première photo . A vue de nez, je le situerai ici dans la pente : Lat 45.460869, Lon 2.848735, en regardant vers le sud.
+
* Celle or Fregnal (2207) describes his observation in front of the cameras and which makes it possible to see the landscape, in particular a small wooded mountain in the background, looking in the direction of his first photo. At first glance, I will locate it here on the slope: Lat 45.460869, Lon 2.848735, looking south.
* Celle très agrandie du PAN 3 (1921). La zone sombre se détache nettement.
+
* The very enlarged one of PAN 3 (1921). The dark area stands out clearly.
  
Si vous avez une meilleure série de photos que la mienne, je les ajouterai au logiciel. Peut-être aussi avez-vous obtenu une copie du film sur les archives de Pathé ? J'en ai fait la demande, le cas échéant je suis preneur.
+
If you have a better set of photos than mine, I will add them to the software. Perhaps you also obtained a copy of the film from the Pathé archives? I made the request, if necessary I am a taker.
  
Enfin, voici un photomontage avec les caractéristiques du modèle 2D ci-dessus:
+
Finally, here is a photomontage with the characteristics of the 2D model above:
  
 
[[image:Chauvet reconstitution photomontage.jpg|800px|thumb|center|La "trajectoire" en rouge est une supposition purement théorique. S'il s'agit d'un canular elle n'a évidemment aucun lieu d'être !]]
 
[[image:Chauvet reconstitution photomontage.jpg|800px|thumb|center|La "trajectoire" en rouge est une supposition purement théorique. S'il s'agit d'un canular elle n'a évidemment aucun lieu d'être !]]
  
==Questions en suspend==
+
==Outstanding questions==
  
* Quel est le point visible sous l'objet dont parle P. Guérin ?
+
* What is the point visible under the object of which P. Guérin speaks?
* Il faudrait récupérer le film de Pathé
+
* The Pathé film should be recovered
  
 
=== Remarque importante ===
 
=== Remarque importante ===
  
Vous l'aurez peut-être noté, mais il existe un espace d'hypothèses possibles pour la reconstitution 3D. Le schéma ci-dessus n'est qu'une configuration possible.
+
You may have noticed this, but there is a space of possible hypotheses for the 3D reconstruction. The diagram above is only one possible configuration.
  
En effet, une inclinaison latérale du phénomène peut-être compensée par une modification de son élévation (hauteur sur l'horizon). Rien ne permet de distinguer ces deux paramètres sans disposer d'une mesure de l'élévation sur l'horizon. Or, ici, seule la dernière photo permet de faire directement ce calcul, sachant que la situation est celle d'une crête vallonnée : le calcul est délicat... Une autre méthode consisterait à partir du film de Pathé, qui laisse à voir une reconstitution avec Frégnale au pied de l'arbre. L'arbre est lui même reconnaissable, là aussi il faudrait utiliser de calculs pour, moyennant une prise de vue différente, retrouver l'élévation théorique.
+
Indeed, a lateral inclination of the phenomenon can be compensated by a modification of its elevation (height above the horizon). Nothing makes it possible to distinguish these two parameters without having a measurement of the elevation on the horizon. However, here, only the last photo allows this calculation to be made directly, knowing that the situation is that of a hilly ridge: the calculation is tricky... Another method would consist of using Pathé's film, which reveals a reconstitution with Frégnale at the foot of the tree. The tree is itself recognizable, there too it would be necessary to use calculations to, with a different shot, find the theoretical elevation. References
Références
 
  
↑ Pierre Guérin, « A Scientific Analysis of Four Photographs of a Flying Disk Near Lac Chauvet », Journal of Scientific Exploration, vol. 8, no 4,‎ 1994, p. 447-469.
+
↑ Pierre Guérin, "A Scientific Analysis of Four Photographs of a Flying Disk Near Lac Chauvet", Journal of Scientific Exploration, vol. 8, no. 4,‎ 1994, p. 447-469.
  
 
[[image:Chauvet pathe 1921.jpg|thumb|center|400px|alt=19:21]] [[image:Chauvet pathe 2207.jpg|thumb|center|400px|alt=22:07]]
 
[[image:Chauvet pathe 1921.jpg|thumb|center|400px|alt=19:21]] [[image:Chauvet pathe 2207.jpg|thumb|center|400px|alt=22:07]]

Version du 19:31, 22 mai 2022

On Friday July 18, 1952, at 6:10 p.m., André Frégnale, geological engineer, walks near Lake Chauvet (Puy-de-Dôme). The weather is very good, the sky is azure blue with a strong westerly wind.

Le témoignage d'André Frégnale

"It was around 6 p.m., told Mr. Frégnale, when I saw the saucer. Ignoring its circumference, I cannot say at what altitude it was flying. Apparently it was between 3,000 and 8,000 meters. I do not think that the altitude could have been higher, because then, due to the thickness of the atmosphere, the craft would have presented a bluish metallic tint which it did not have.'
Four snapshots.
"I had time to take four shots very quickly. I saw the craft for about 50 seconds and after taking the views I observed the craft with binoculars. According to my observations and calculations I did later, if the saucer was at 3,000 meters it propelled itself at about 300 meters per second, if it was at 8,000 meters its speed was naturally greater and could reach 800 meters per second. I heard absolutely no noise.
"The craft - as has often been said - is in the shape of an oval saucer. Below and in the center there seems to be a slight bulge, but I am not sure. Around the part circular appears a brilliant circle. I suppose that above the apparatus of the blades, or some other gyroscopic system, turn very quickly, which would explain the reflection which one sees very clearly on the stereotypes which I took ."
The witness uses a camera that he carries with him, a 24x36 Zeiss Ikonta equipped with a 45 mm lens. He takes 4 shots, for 25 s. (source?)
When the machine is too far to photograph it correctly, the witness takes his binoculars to follow the object which moves away and sees it disappear, almost instantaneously, as if it vanished on the spot. In total, the observation lasted less than 1 min. (source?)
The witness, however, reportedly still refused to believe in the reality of UFOs, and as for the object he photographed, thinks it may be a flying model, or - more surprisingly for a witness direct - of agglomerated cosmic dust (sic).


  • Daily Le Méridional, France, p1 and p8
  • Pathé Information

(source to be specified)


Generalities

After more than sixty years, it is hard to appraise negatives that have disappeared anyway and worse, to question a witness who is now deceased. Interesting to note, according to the words of the witness, the critical spirit he has with regard to the evaluation of the dimensions, a trap in which many witnesses nevertheless fall today.

However, the photos taken at Lac Chauvet still appear as intriguing, too good to be true according to some: the question of "what?" always remains posed.

On the one hand, with hindsight, despite the witness's own distancing, couldn't this be a hoax? Could Frégnal have deliberately photographed a thrown or hovering object? On the other hand, Pierre Guérin, professor at the Institute of Astrophysics in Paris, had published several analyzes of these photos, concluding that they were authentic. However, he started from a premise: the trajectory was straight, basing his analysis on the words of the witness, and therefore his sincerity.

Doubters and believers have regularly attacked to refute and take a stand. I prefer to warn you immediately: I will not put an end to this matter, I just modestly prefer a contribution.

Analysis method

Without calling into question the words of the witnesses, but without relying on them either, I found the idea of ​​modeling the trajectory in 3D, solely on the basis of the photos, interesting: can we check whether the words of the witnesses do they match the pictures? Especially since browsing the net, I have nowhere found an attempt to reconstruct the scene allowing to represent the framing and the trajectory (except in the form of trigonometric equations and parameters).

I decided to work "blind", that is to say, without taking up Pierre Guerin's calculation elements, nor those presented on the Adelmon site to try to remain as "neutral" as possible.

To recreate a three-dimensional model of the scene, I relied on a tool that I use from time to time, which allows me to find the geometry parameters in 3D on objects that we see in photos. Here, I made it evolve a little so that it simultaneously takes into account the 4 photos and offers a dynamic reconstruction of the scene, according to the parameters entered.

My goal was to find at least one setup that could satisfy the photos and lighting conditions.

Determination of the orientation of the phenomenon and its contours

Given the motion blur, to help determine the boundaries of the object in the photo, but also to determine its orientation parameters in space, I assumed it was a disc In 3D. More precisely, a model based on two discs, of which the central one is located very slightly above the other: I took into account a very slight asymmetry of the respective centers. It seems to correspond to a "depression" of the central disc, moreover less than that of a 3D model of clay pigeon (~1% in proportion to the diameter, perhaps considered negligible and requires better photos to decide ).

I visualized this disk in "flat" space, then I used 3 axes of rotation according to a reference attached to this 3D disk, to vary the display.

Thanks to this, by playing on the 3 axes of rotation, we vary the position of the 3D shape in space until we find the exact configuration of each photo.

3 axes rotation espace, illustration.png

These are the rX, rY and rZ values ​​(expressed in degrees) used on the simulator page (presented later in the article) that I saved and that you can modify. I also apply a zoom coefficient (Zoom Factor) which determines the angular size of the PAN on each photo.

Using the same 3D shape for each photo helps to reduce the uncertainties from one photo to another, such as, for example, on the position of the central dark area, which is sharper in photo 3, which can be as a result, readjust/find more easily on the others.

Determination of the position of the phenomenon in space

The approach was as follows: initially, I only relied on the relative PAN/sun/observer angles so as not to be interfered with by the orientations of the photos. Whatever the position of the photographer and the inclination of his photos, this should not have any impact on the rendering of the phenomenon as such.

Indeed, there are always at least two markers visible on each photo of the phenomenon which make it possible to delimit a luminous arc along the phenomenon. They are related to the reflection of light on the surface of the object and they are noted in the diagram below by an orange and blue cross.


• The orange cross represents the point of extinction of the light rays, in the observer's field of vision. This is the limit beyond which the sun can no longer illuminate. The tangent to the edge of the object at this location indicates the direction of the sun. • The blue cross represents the point of disappearance of the light rays, in the observer's field of vision. Beyond this point the observer can no longer see them because the light rays are well reflected but are behind the object, relative to its position. Using this point of disappearance, and taking the tangent to the edge of the object, we must find the direction of the observer.

Application of the method

Starting from this idea, I needed the means to calculate these tangents and therefore to straighten the shapes by choosing the right 3D geometry parameters. Classically, the program I made uses rotations along the 3 axes x, y, z, and considering that the frame formed by the axes (x, y, z) passes through the center of the object.

A 3D simulator to find the inclination parameters of the phenomenon

Vers le simulateur

You can test the program (you won't break anything! default settings are saved, they are automatically reset each time you use it). I tried to make it fun enough, and everyone can try to figure out settings that work.

Comment appliquer les paramètres de prise de vue

When you connect to the page, here's how it works:

  1. first, we choose the photo on which we want to work and we press "OK",
  2. then, the green circles must be aligned with the exterior and interior contours of the photos of the phenomenon, with the uncertainty linked to the nature of the bevel on the edge of the object and the blur
  3. then, the yellow cross makes it possible to find the direction of the sun. You must align the yellow diamond on the point of extinction of the light. The yellow arrow then indicates the direction of the sun. The yellow cross (the surface lighting) is attached to the 3D object. The "Z axis rotation" parameter must be varied
  4. finally, the blue cross makes it possible to find the direction of the witness. This time, you have to align the blue diamond, on the second point of extinction of the light, where it disappears to pass behind the phenomenon. You have to play with the "Dir. observer" parameter, independent of the 3D visualization parameters of the object. Note I think that here you can also find the intersection with the point that determines the largest apparent width of the oval: if the photo is horizontal it should be equivalent (see previous diagram).

Finally, you can play with the other parameters:

3D soft legendes.jpg

And when you are satisfied, you validate again on the [OK] button: a straightened photo is calculated with the given parameters, on this one appears the direction of the sun and the indicator:

Chauvet photo 2b 3D.png

These directions make it possible to position the phenomenon on a 2D plane: what matters is that the relative difference between the yellow and blue arrows is preserved. I also considered arbitrarily that the elevation was given by the rotation rX.

The effective distance to the witness is relative to the size of the phenomenon (in meters), which is also arbitrarily given: you can modify it to simulate an object as large/small as you wish. It will not change the orientation and general geometry.

Other parameters are accessible: direction of the sun, angular resolution of the photos, angular distance from the center of the phenomena relative to the left edge of each photo.

The white line below represents an example of a dynamically calculated trajectory. The purple arcs are the angular fields of the photos (straightened horizontally).

Chauvet reconstitution top.png

Note that when you apply the rotation parameters these are done in the following order:

 1. rotation around the Z axis (in the horizontal plane),
 2. rotation around the X axis (which corresponds to a lateral inclination, heel or elevation on the horizon) at 90° this is equivalent to seeing the phenomenon at the zenith, and finally,
 3. Y-axis rotation forward or backward (camber somehow).

Findings

The following conclusions are of course not definitive. However, here is what can be said on the basis of this reconstitution proposal:

  1. if it is indeed the same series of photos and the same phenomenon, it does indeed have a "relatively" rectilinear trajectory
  2. the altitude is more or less constant: slightly "hollowed" at the start by a steep descent to point 2, then a slight ascent to point 4
  3. the dark zone is oriented in the axis of the sun, except in photos 3 and 4 an off-centering of about ten degrees occurs, in the direction of movement.
  4. it doesn't take much for photos 3 and 4 to overlap (but we knew that).

I wondered if radiosity could explain the dark zone visible under the phenomenon ( http://fr.wikipedia.org/wiki/Radiosit%C3%A9_%28infographie%29), since this zone is oriented in the axis of the sun. (Particularly on photos 1 and 2, but it is a little less true for 3 and 4). Indeed, perhaps the edge of the phenomenon masked the sun and created a shadow on its inner face? The lighting of the lower face would then have been due only to radiosity (indirect lighting from the ground). I made a 3D model based on a "clay pigeon" type disc, and if we can get close to the desired effect up to a certain point: we need ambient light is much less strong, that it is almost dark: with lighting at 6:10 p.m. local (5:10 p.m. UT), it is much too bright, moreover, in its descending part (1 and 2), the phenomenon is inclined towards the sun;

3D model of the photographed phenomenon.

Moreover, even with a darker sky, I cannot extend the shadow to the edge of the phenomenon: there is always a clearer outline, contrary to what appears on the image of the film Pathé ( 1921.jpg in PJ).

So is this dark zone constitutive of the phenomenon? Likely. It also appears degraded: the black seems to be getting lighter towards the back part (see the radiometric cut with IPACO).

Finally, I was able, by modifying the URL parameters on the Pathé site, to access large format photos normally hidden and extracted from this film. I enclose the two most remarkable:

  • Celle or Fregnal (2207) describes his observation in front of the cameras and which makes it possible to see the landscape, in particular a small wooded mountain in the background, looking in the direction of his first photo. At first glance, I will locate it here on the slope: Lat 45.460869, Lon 2.848735, looking south.
  • The very enlarged one of PAN 3 (1921). The dark area stands out clearly.

If you have a better set of photos than mine, I will add them to the software. Perhaps you also obtained a copy of the film from the Pathé archives? I made the request, if necessary I am a taker.

Finally, here is a photomontage with the characteristics of the 2D model above:

La "trajectoire" en rouge est une supposition purement théorique. S'il s'agit d'un canular elle n'a évidemment aucun lieu d'être !

Outstanding questions

  • What is the point visible under the object of which P. Guérin speaks?
  • The Pathé film should be recovered

Remarque importante

You may have noticed this, but there is a space of possible hypotheses for the 3D reconstruction. The diagram above is only one possible configuration.

Indeed, a lateral inclination of the phenomenon can be compensated by a modification of its elevation (height above the horizon). Nothing makes it possible to distinguish these two parameters without having a measurement of the elevation on the horizon. However, here, only the last photo allows this calculation to be made directly, knowing that the situation is that of a hilly ridge: the calculation is tricky... Another method would consist of using Pathé's film, which reveals a reconstitution with Frégnale at the foot of the tree. The tree is itself recognizable, there too it would be necessary to use calculations to, with a different shot, find the theoretical elevation. References

↑ Pierre Guérin, "A Scientific Analysis of Four Photographs of a Flying Disk Near Lac Chauvet", Journal of Scientific Exploration, vol. 8, no. 4,‎ 1994, p. 447-469.

19:21
22:07